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hen the interface between two materials experiences strong accelerative 
or shearing forces, the inevitable results are instability, turbulence, and 
the mixing of materials, momentum, and energy. One of the most impor- 
tant and exciting breakthroughs in our understanding of these disruptive w 

processes has been the recent discovery that the features of the processes often are 
independent of the initial interface perturbations. This discovery is so important that 
scientists at Los Alamos National Laboratory, the California Institute of Technology, 
the Atomic Weapons Research Establishment in Great Britain, Lawrence Livermore 
National Laboratory, as well as scientists in France, and no doubt in the Soviet Union, 
are working hard to confirm and extend this new understanding experimentally. 

Theoretical analyses are likewise showing a firm basis for this astonishing dis- 
covery. Two types of theory are being employed, gradually combined, and even 
proved essentially equivalent. These are the multifield-interpenetration approach and 
the single-field turbulence approach. Even brute-force hydrodynamics calculations are 
demonstrating this same property of independence from initial perturbation. 

The consequences for developments in such main-line Laboratory projects as 
inertial-confinement fusion are profound. Our entire view of material mixing, tur- 
bulence shear impedance, and energy transport has undergone a revolutionary shift to 
qualitatively different directions. 

What is the physical essence of this new way of thinking? No matter how 
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TURBULENCE EFFECTS 

Fig. 1. The effects of turbulence include in- 
creased mixing of initially separated materi- 
als, an increase in shear impedance of fluid 
near rough boundaries due to the turbulent 
viscosity, and increased transport of heat 
into surrounding cooler regions. 

Increased Mixing of Materials 

Increased Heat Diffusion 

carefully we attempt to achieve smoothness and homogeneity, any sufficiently strong 
destabilizing influence at a material discontinuity will inevitably be disruptive. Indeed, 
the disruptive effects will be manifested in essentially the same manner as if there were 
a considerable roughness or inhomogeneity at or near the interface. Add to this the 
effects of any long-wavelength asymmetries, and we have an immutable inevitability 
for major instabilities in virtually every experimental circumstance of accelerative or 
shearing dynamics of interest to the Laboratory. Reliable predictability of new weapons 
designs in a comprehensive test ban, the design of any locally intense energy source, the 
development of workable concepts in Strategic Defense, the achievement of successful 
inertial-confinement fusion devices, and the success of many other Laboratory programs 
will depend crucially on our ability to model these instability and turbulence effects 
realistically. 

What Is Turbulence? 

To describe the techniques we are using to model these effects, we must first 
consider in more detail the properties of turbulence itself. Turbulence is the random 
fluctuation in fluid motion that often is superimposed on the average course of the 
flow. The effects of turbulence can be highly significant (Fig. l), increasing the fluid's - " i ~ " 6 '  effective viscosity and enhancing the mixing of initially separated materials, such as the -/- mixing of dust into air or bubbles into a liquid. Turbulence is a significant factor in the 
wind resistance of a vehicle, in the dispersal of fuel droplets in an internal combustion 

Increased Shear Impedance engine, in mixing and transporting materials in chemical plants, indeed in virtually 

every circumstance of high-speed fluid flow. 
It is easy to be deceived into thinking that turbulence is rare, because it often 

is not directly visible to the casual observer. Although water flowing rapidly through 
a transparent pipe may look completely smooth, touching the pipe can reveal large 
vibrations and the injection of dye through a tiny hole in the wall can demonstrate rapid 
downstream mixing. Both effects are a direct result of intense turbulent fluctuations. 

Turbulence in air can be demonstrated-even in a relatively calm room-by 
holding one end of a long thread and watching its fluctuating response to air currents. 
Sunshine streaming over the top of a hot radiator creates shadow patterns on a nearby 
wall that dance restlessly in the never-ending turbulence that accompanies the upward 
flow of air. 

Why is nature discontent with the smooth and peaceful flow of liquids and gases, 
especially at high flow speeds? What are the processes that feed energy into turbulent 
fluctuations? The answers lie in the behavior of energy. In contrast to momentum, 
energy has the peculiar ability to assume numerous and varied configurations. Momen- 
tum constraints, while restrictive, are helpless to prevent seemingly capricious energy 
rearrangements. In any real fluid flow, these rearrangements are triggered by inevitable 
perturbations that can be fed from the reservoir of mean-flow energy. 

It is helpful at this point to compare turbulence with the random motion of simple 
gas molecules in a box because the approaches to both of these problems include much 
that is similar. However, the analogy becomes seriously misleading if pushed too far. 

Molecular Systems. In a box of molecules the dynamics of each individual can 
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be described quite accurately by Newton's laws. Yet we seldom try to analyze the 
complex interactions of all the trajectories, which are seemingly capable of very chaotic 
behavior. Instead, we appeal to the remarkably organized mean properties of the motion, 
identifying such useful variables as density, pressure, temperature, and fluid velocity. 

We cannot ignore the departure of the individual from the behavior of the mean; 
indeed, some of the most interesting properties of the gas are directly associated 
with these departures. Diffusion of heat energy, for example, represents transport of 
kinetic energy by fluctuations; pressure in a "stationary" gas is the result of continual 
bombardment of molecules against objects immersed in the gas (Fig. 2(a)); viscous 
drag between two opposing streams of gas (Fig. 2(b)) arises because of fluctuations 
from the mean-flow velocity that cause molecules to migrate from one stream to the 
other. 

Turbulent Eddies and Mean Flow. Turbulent eddies in a fluid superficially resem- 
ble individual molecules in a gas. They likewise bounce around in random fashion, 
carrying kinetic energy in their fluctuational velocities. (Such turbulence kinetic energy 
is typically as much as 10 per cent of the mean-flow kinetic energy, or even more in 
regions where the mean flow stagnates at a solid surface.) Eddies also diffuse mo- 
mentum (plus heat and any imbedded materials), exerting pressure through momentum 
transport and bombardment against walls. 

But the concept of a turbulent eddy is nebulous at best. Gas molecules have an 
easily identifiable shape, size, mean separation, and mean free path between collisions. 

Turbulent eddies, in contrast, have a spectrum of sizes; they overlap each other; the 
constraint on their motion through the fluid by the immediate presence of neighboring 
fluid precludes the simple concept of a mean free path. 

Moreover, identification of what part of the dynamics is turbulence and what part 
is mean flow is arbitrary. For molecules the distinction is essentially unique; in most 
circumstances, individual molecular fluctuations take place on a scale that is orders of 
magnitude smaller than the scale of collective, fluid-like motion. For turbulent eddies 
the fluctuational scale may be an appreciable fraction of the mean-flow scale. More 
to the point, the observer's experimental configuration itself establishes the distinction 
between turbulence and mean flow. 

To put the matter succinctly, mean flow is that part of the dynamics directly 
associated with the macroscopic conditions established or measured by the observer, 
whereas turbulence is the more capricious part of the flow associated with finer-scaled 
perturbations not controlled by the observer but inevitably present in any real flow. 

As an example, consider air flow around a parked automobile on a gusty day. With 
suitable instruments an observer can record variations in the approaching wind velocity. 
These measurements describe the source of the mean flow, and the macroscopic features 
of the car constitute the boundary conditions. Mean-flow patterns in the wake on the 
downwind side of the vehicle can be observed either with a ribbon that stretches out 
with the average air velocity at each place it is held or with an upstream smoke generator 
emitting a thin filament of smoke that can be photographed as it passes over the car. 

Both the ribbon and the filament have an average direction to their motion that 
varies on the same time scale as that of the monitored gusts of wind; the relationship 
between these two features is the correlation that our investigator is seeking. In addition, 

MOMENTUM FLUX 

Fig. 2. (a) The pressure on a wall is the 
result of the transfer of momentum during 
collisions between individual molecules and 
the wall. (b) Viscous drag between two op- 
posing streams 01 gas is a result 01 individ- 
ual departures from the mean-flow velocity 
in each stream. More precisely, pressure 

and viscous drag represent the normal flux 
through any imaginary surface of the normal 
and the tangential components of momen- 
tum, respectively. 

Mole 
Trajectories 1 

Pressure on a Wall 

viscous Drag 

Flow 
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TANGENTIAL DRAG 

Fig. 3. Fluid moving in a circular trough 

loses mean-flow kinetic energy because of 
tangential drag on the walls. Although this 
entire loss in energy will eventually appear 
as heat, a significant fraction may first ap- 
pear as the kinetic energy of turbulence. 

however, the ribbon flutters rapidly about that average (at the rate of many fluctuations 
per second), and the smoke filament diffuses in contorted kinks into the surrounding 
air. This capricious variation around the time-varying average is what our observer 
calls turbulence. 

A second observer standing nearby, but paying no attention to the detailed obser- 
vations of the first, feels buffeted by the gusts and, likewise, would agree that there is 
much turbulence. However, this observer can legitimately disagree as to which part of 
the air flow is mean flow and which part is turbulence, seeing an average southwesterly 
wind with turbulent variations that last several seconds. Meanwhile, an earth-orbiting 
satellite reveals that the southwesterly wind is simply a momentary fluctuation (of a 
half hour or so) from the general westerlies crossing the continent that day. 

This example has three different fluctuational scales, all properly identified as 
turbulence on the basis of the observer's chosen viewpoint. The difference, however, 
is not merely one of semantics, and we discuss below the consequences of this multiple 
viewpoint to mathematical modeling of the flow processes. Important guidance is 
furnished by a careful consideration of interactions among the various dynarnical scales. 

There is thus a seemingly random nature to both molecular dynamics and turbu- 
lence. The detailed flow field of a group of molecules or eddies can vary by large 
amounts as a result of minor initial perturbations on a microscopic scale. But the re- 
markable feature of these dynamical systems is that the overall stochastic behavior is 
essentially independent of the manner in which the fluctuations are introduced. 

However, not every fluid flow is sensitive to minor perturbations. Viscous or 
slowly moving fluids travel in a purely laminar fashion, responding negligibly to fine- 
scale perturbations. Why does flow remain stable for some conditions and exhibit 
turbulence for others? The answer lies in the ways in which energy is drawn from the 
mean flow as the motion gradually decays to quiescence. 

Turbulence Energy: Sources and Sinks 

The statements of mass, momentum, and energy conservation lie at the foundations 
of fluid dynamics. In particular, fluid flow implies the presence of energy, which can 
exist in any of various forms: kinetic, heat, turbulence, potential, chemical. For the 
moment we are concerned only with the first three. By kinetic energy we mean the 
motion energy carried by the mean flow; heat energy refers to the kinetic energy of 
molecular fluctuations. Turbulence energy is at a scale between these first two: it is 
the kinetic energy of fluctuations that are large compared with the individual molecular 
scale but small compared with the mean-flow scale. 

As we said earlier, in contrast to mass and momentum, which are highly constrained 
by their conservation laws, energy behaves very capriciously. Although total energy 
is rigorously conserved, transitions among the many manifestations of energy occur 
continuously. It is a remarkable fact of nature that, as a result of such transitions, any 
system devoid of remedial influences inevitably tends to move from order to disorder. 
An egg hitting the floor turns to a mess as ordered kinetic energy is converted into splat. 
Cars break down, rust, and eventually end up as nondescript piles of metallic and organic 
compounds blowing in the wind or leached by groundwater into a progressively wider 
and less ordered distribution. Fluids in a nicely ordered state of mean flow likewise 
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ENERGY DEGRADATION 
v 

Kinetic Energy 

I - 1 
Fig. 4. The mean-flow kinetic energy of a 

Mean-Flow fUneti0 Energy moving fluid inevitably degrades to thermal 
energy. Frequently, however, part of that 
kinetic energy is first transformed to kinetic 
energy of turbulence. 

tend toward (mass- and momentum-conserving) states of disordered energy in which 
the only residuum is heat-and even that leaks off to the less ordered state of wide 
dispersal as a result of conduction and radiation. In thermodynamics, the trend from 
order to disorder is called the Second Law; its profound scientific and philosophical 
implications have been discussed and debated for many decades; its validity is beyond 
doubt. 

Consider a fluid that has been set into smooth and uniform motion in a circular 
trough (Fig. 3). It has zero total (vector) momentum: as much is moving east as is 
moving west at every instant. Tangential shearing drag on the walls slows the motion 
so that mean-flow kinetic energy is lost. Where does the energy g o ~ t o  turbulence or 
to heat? The competition is fierce, and heat always wins in the end, but fluids yield 
themselves to the inevitable only grudgingly. If at all possible, they transform at least 
part of their kinetic energy to turbulence as an intermediate step along the way (Fig. 4). 

Let's replace this animistic description with physics. The conversion of mean- 
flow kinetic energy directly to heat is limited by the viscosity of the fluid and by the 
steepness of the mean-flow velocity gradients. For example, consider fluid flow between 
two plates moving in parallel but opposite directions (Fig. 5). Although a variety of 
flow-velocity profiles could have been depicted, the one shown has the smallest fluid 
kinetic energy of any flow profile with that same momentum between the moving plates. 
This profile is thus the flow distribution to which all others inevitably tend. 

Suppose we now examine a flow profile at the opposite extremeÃ‘on in which 
the gradient at the midpoint between the plates is very sharp (Fig. 6(a)). Both this 
distribution and the stable one in Fig. 5 have the same total fluid momentum (namely 
zero); however, in the distribution in Fig. 6(a), every fluid element has the same speed 
(uo), whereas in the stable distribution, most elements are moving slower than uo. Thus 
the fluid in Fig. 6(a) possesses an excess of kinetic energy compared to the fluid with 

STABLE FLOW BETWEEN 

MOVING PLATES 

Fig. 5. When fluid is trapped between two 
plates moving at speed UQ in parallel but op- 
posite directions, a gradient in fluid veloc- 
ity is established. The linear flow-velocity 
profile shown here has the smallest kinetic 

energy of any profile at that same total rno- 
rnentum for the given boundary conditions. 

+ 
Linear - Velocity - Profile 

the stable profile and will lose part of this energy as it transforms toward the stable 
configuration. Will turbulence be an intermediate state in this evolution? To answer 
this question we must dig deeply into the competitive processes of dissipation and 
instability. 
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UNSTABLE FLOW 

Fig. 6. A discontinuity in the velocity pro- 
file between two oppositely moving fluid re- 

gions can lead to a Kelvin-Helmholtz insta- 
bility at that interface, resulting in turbu- 
lence. For example, if, as in (b), the inter- 
face experiences a sinusoidal perturbation 
of wavelength \ and amplitude A, such a 
perturbation will act effectively as a series of 
Venturi nozzles (c) that alter the mean-flow 
velocities and pressure p. These pressure 

variations, in turn, further increase the dis- 
tortion. 

Ã‘Ã‘Ã‘Ã‘Ã 
Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘ 

Ã̂‘Ã‘Ã‘Ã 
<Ã‘Ã‘Ã‘Ã‘ Discontinuity 
*Ã‘Ã‘Ã‘Ã in Velocity Profile 
.Ã‡Ã‘Ã‘Ã‘Ã‘Ã‘ 

Consider first the dissipation of mean-flow kinetic energy into heat. Let H be heat 
energy per unit volume and dufdy describe some measure of the mean-flow velocity 
gradient in a fluid with molecular viscosity b. Then the rate at which heat is generated 
is given by 

dH 

To estimate the rate at which turbulence energy is generated, we return to the flow 
described in Fig. 6(a), which is susceptible to a destabilizing process called the Kelvin- 
Helmholtz instability. The presence of such an instability is easily demonstrated for an 
incompressible fluid if we arbitrarily assume that the slip interface between the upper 
and lower halves of the flow profile is distorted by a sinusoidal wave of wavelength 
A and amplitude A (Fig. 6(b)). Because the fluid is incompressible, wherever the flow 
area is constricted the fluid has to move faster than average, and wherever the flow 
area is expanded the fluid has to move more slowly (Fig. 6(c)). What is the associated 
behavior of the pressure? Each cycle in the perturbation is like a Venturi nozzle, for 
which Bernoulli's law says the pressure is less in the constricted region where fluid 
speed is higher and is greater in the expanded region where fluid speed is lower. Thus, 
there is a pressure difference across the perturbed slip plane, acting in exactly the right 
direction to enhance the perturbation amplitude. 

More formally, we can associate an appropriate inertia with the material being 
accelerated (the acceleration of the perturbation in the slip plane is d^/dt2), and we can 
use Bernoulli's law to calculate the pressure difference (the driving force for enhancing 
the perturbation), which is proportional to the square of the fluid speed uk. Newton's 
second law then leads to the following formula for the behavior of the perturbed slip 
plane: 

(b) -<Ã‘Ã‘Ã‘Ã A Ã‘Ã‘Ã‘Ã‘Ã 

The growth in amplitude is dA/dt, so the kinetic energy per unit volume involved in 
this turbulent-like motion is 

where p is the density of the fluid. Differentiating Eq. 3 and substituting Eq. 2, we see 
that turbulence energy K ,  in turn, grows as 

-Ã‡Ã‘ 
LOW D 

With w = (27ruo/A), a solution of Eq. 2 is A = Ayewt, and 

(6) 
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The essence of these results is that d K / d t  increases with time (UJ is positive), whereas, 
because viscosity smears out the sharp velocity transition, thus decreasing du /dy ,  
dH /dl  decreases with time (Eq. 1). Whenever the amplitude (scale) of the disturbance 
is large enough, turbulence creation will dominate. 

The important dimensionless quantities involved in the competition between tur- 
bulence energy creation and heat dissipation can be illustrated by taking the ratio of 
the growth rates of turbulence energy and heat energy at t = 0. Using Eqs. 1 and 6 and 
setting du/dy w 2u0/A at t = 0 we find 

Local Initial 
Reynolds Pertur- 
Number bation 

where Ay/X can be thought of as a measure of the extent of the initial perturbation. 
The appearance in this equation of the local Reynolds number is not surprising, given 
that the number is a measure of the competition between the inertial and viscous effects 
in any flow (see "Reynolds Number"). 

As long as dH felt dominates, the mean-flow kinetic energy dissipates to heat, and 
the intermediate turbulent stage is bypassed; we say that the mean flow is stable. 
If d K / d t  dominates, then the mechanism driving the instability draws the excess 
kinetic energy into turbulence. We can thus formulate a stability criterion, based on 
the Reynolds number, in which molecular viscosity plays a central role. For large 
viscosity, dH /dt  is able to exactly balance the loss rate for mean-flow kinetic energy. 
Decreasing the viscosity eventually drops dH /dt  below the mean-flow loss rate, and 
the flow becomes unstable. 

As a corollary, note that conservation of total energy raises an interesting question 
about mean-flow dynamics. What mechanism accounts for destruction of mean-flow 
kinetic energy at exactly the required rate to ensure conservation? The answer is 
viscosity-molecular viscosity and turbulence viscosity. 

For the case of only direct viscous dissipation to heat, viscous drag between the 
opposing currents causes each to slow down, and the corresponding loss rate for kinetic 
energy exactly accounts for the dissipative heating. For the case of transfer of mean-flow 
kinetic energy to turbulence, a directly analogous process occurs in which turbulence 
viscosity produces drag. More precisely, the presence of turbulence induces a fluid 
shear stress, the Reynolds stress, that is independent of the molecular viscosity of the 
fluid. Expression of the components of the Reynolds stress tensor in terms of readily 
measured flow quantities (such as pressure and mean-flow velocity) lies at the heart of 
our theoretical work and is discussed in detail in the next section. 

Analogous to molecular viscosity, turbulence viscosity depletes mean-flow kinetic 
energy at precisely the same rate that turbulence energy is growing. A direct conse- 
quence is that turbulence contributes to the effective viscosity of the fluid, enhancing the 
rate of momentum diffusion from one part of the fluid to another as it simultaneously 
destroys the excess mean-flow kinetic energy. As we shall see, turbulence diffuses 
anything imbedded in the fluid-momentum, heat, dye, dust particles, dissolved salts. 
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Number 

o design and test proposed large- 
scale equipment, such as airfoils or 
entire aircraft, it is often much more T 

practical to experiment with scaled-down 
versions. If such tests are to be success- 
ful, however, dynamic similitude must 
ex& between model and field equipment, 
whish, in turn, implies that geometric, in- 
e r t i a  and kinematic similitude must ex- 
ist. 

The Navier-Stokes equations (Eqs. 9 
and 10 in the main text) are a good start- 
ing point for deriving the relationships 
needed to establish dynamic similitude. 
First, we look at the case of laminar flow. 
IgHQH&g body force and pressure effects, 

examine the momentum conservation 
relationship for steady, laminar, incom- 
pcessible, two-dimensional flow, equating 
j@&? advection and diffusion terms in 
fh& x-metion: 

@.y - .- QVu d2u d2u -+- = [z+-] . ( I )  
& B y  d y  
Advection Diffusion 

Here u and v are the x and y compo- 
nents of the velocity and urn is the molec- 
ular kinematic viscosity (the ratio of fluid 
viscosity to fluid density d p ) .  Advec- 
tion has to do with kinematic effects, that 
is, the transport of fluid properties by the 
motion of the fluid, and thus accounts for 
momentum transport along streamlines; 
the diffusion terms represent viscous ef- 
fects that cause momentum to diffuse be- 
tween streamlines, thereby tending to di- 

mulish any sharp velocity gradients. 
We can write Eq. 1 in dimensionless 

form by introducing a length scale L and 
a fluid velocity in the free stream UO. The 
result is 

where the highlighted variables are di- 
mensionless. This portion of the momen- 
turn equation can thus be uniquely char- 
acterized by the ratio of the coefficients 
multiplying the dimensionless advection 
and diffusion terms. The ratio, called the 
Reynolds number 

can be thought of as a comparative mea- 
sure of inertial and viscous (diffusive) ef- 
fects within the flow field. To achieve dy- 
namic similitude in two different laminar- 
flow situations, the Reynolds numbers for 
both must be identical. 

What happens if we increase the flow 
speed to the point that viscous dissipa- 
tion can no longer stabilize the flow, and 
the macroscopic balance between mean- 
flow inertia and viscous effects breaks 
down? At this point there is a transition 
from purely laminar flow to turbulence. 
In similar flows, the transition occurs at 
a specific Reynolds number characteris- 
tic of the flow geometry. For instance, 
any fluid traveling inside a circular pipe- 
regardless of the specific fluid or conduit 

being used-experiences the onset of tur- 
bulence at R %' 2000. 

At or near this "critical" Reynolds num- 
ber, inertial contributions to mean-flow 
momentum that cannot be dissipated by 
viscous stresses must be absorbed by new- 
ly formed turbulent eddies. The pres- 
ence of turbulence energy is often de- 
scribed in terms of an effective turbulence 
viscosity ut, defined as the ratio of the 
turbulence-shear, or Reynolds, stress to 
the mean-flow strain rate. With this in 
mind, an effective turbulence Reynolds 
number-one that includes molecular vis- 
cous effects-is 

d -7 

uoL ,&$- ReE = - . - ' (4) 
Ut + Vm % 

>hi 

Molecular viscous effects are overwhelm- 
ed if V, Ã urn In those instances the 
exact value of the kinematic viscosity vm 
is immaterial, and flow behavior is dom- 
inated by turbulence effects. 

Although a turbulence Reynolds num- 
ber may be entirely adequate for research 
on macroscopic flows, the analysis of 
turbulence substructure requires a third 
Reynolds number, a local turbulence Rey- 
nolds number based not on L and uo but 
on representative eddy size s and eddy 
velocity u': 

u's 
R s -  --. - 

urn 

Note that the molecular kinematic viscos- 
ity urn is retained in this definition. The 
choice of molecular viscosity to charac- 
terize the dissipative mechanisms respon- 
sible for tearing eddies apart is based on 
the ultimate transformation of turbulence 
into heat energy. Molecular processes 
are, in the end, dominant at the small- 
est scales, and Re is a relative measure of 
the loss of kinetic energy from an eddy 
of a given size to heat. For the smallest 
eddies in a flow system, Rs %' 1; that is, 
all the energy of the eddy is dissipated 
into heat. i 
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What then can we deduce from this example about the features necessary for the 
creation of turbulence? 

0 A mean-flow profile richer in kinetic energy than other momentum-conserving 
states to which it can transform (such as the profile in Fig. 6(a) that can transform 
to the one in Fig. 5) .  

0 A viscosity low enough that dissipation to heat cannot absorb all the mean-flow 
energy during the transition to the low-energy profile. 

0 A driving mechanism for enhancement of the inevitable microscopic perturbations 
(such as the Kelvin-Helmholtz instability in Fig. 6). 
However, the energy of turbulence frequently comes from sources (Fig. 7) other 

than a velocity profile rich in mean-flow kinetic energy. For example, turbulence can 
be fed directly from potential energy as when a Rayleigh-Taylor instability develops at 
the interface between, say, water overlying a less dense layer of oil or cold air overlying 
warm air. The latter instance, called buoyancy-driven turbulence, produces the dancing 
air currents that can be seen by looking across the surface of a sunlit roof on a cold day. 
Similarly, turbulence can be fed by accelerative forces as when a Richtmyer-Meshkov 
instability develops at the deformable interface between two materials that are perturbed 
by, say, a passing shock wave or the sudden acceleration of the entire system. 

Droplets, particles, or bubbles projected through a liquid or gaseous fluid with 
some relative velocity likewise can serve as a good source of turbulence energy. The 
momentum-conserving transition induced by drag tends always to bring such entities 
and the fluid to the same velocity. Competition for the center-of-mass kinetic energy 
results in a partition into both heat and turbulence-the winner again depending on the 
level of viscosity. 

Likewise, if a quiescent suspension is subjected to a pressure gradient or shock, 
a differential acceleration occurs that is in proportion to the difference in densities 
between the suspended entities and the surrounding medium. Turbulence often gleans 
a significant share of the resulting interpenetrational energy. 

Turbulence Sinks. So far we have been discussing only sources for turbulence and 
the manner in which the turbulence decays. Here we must return to what constitutes 
turbulence and, in particular, reaffirm that the existence of turbulence depends on the 
observer's point of view. Mean flow is that part of the dynamics whose structure is 
comparable in size to the region being measured; it is capable of being reproducibly 
duplicated or monitored-at least in some statistical sense. Finer dynamical scales of a 
capricious nature arising from random initial, boundary, or bulk perturbations constitute 
the fluid's turbulence. But the mean flow for one observer may simply be the larger 
scales of a turbulence spectrum for an observer whose field of view encompasses a 
somewhat larger domain. Thus, the source of turbulence seen by one observer becomes 
the energy sink for the decay of turbulence at the larger scales of another observer. 

This principle and its generalizations have powerful consequences for our math- 
ematical modeling of turbulence dynamics, leading to the concept of a turbulence 
cascade. In this process turbulence energy is transferred to progressively smaller and 
smaller fluctuational scales with the source of energy for each scale coming from the 
mean-flow velocity contortions of the next larger scale (Fig. 8). At each stage, there 
is competition for the energy, part going into heat and part going into even smaller 
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SOURCES OF TURBULENCE Shear Instability (Scavenging of Mean-Flow Shear Energy) 

Fig. 7. Although we have so far dealt only 
with shear instabilities (Figs. 5 and 6), there 
are many other sources of turbulence, rang- 
ing from the instability of one fluid overlying 
a less dense one, through the interpenetra- 
tion of two distinct phases, to the interaction 
of a shock wave with particles or surfaces. 

Body Force 

Acceleration Instability 

Buoyancy 

(Rayleigh-Taylor) 

Shock Interactions 
with Deformable Surface 

(Richtmyer-Meshkov) 

Energy from Relative Interpenetration (Two-Phase Instability) 

Shock Interaction with a Suspended Particle 

turbulent fluctuations. However, as the scale decreases, the characteristic length of the 
eddies decreases, and the velocity gradients in the eddies become steeper and steeper. 
In other words, dH /dt  eventually wins, and, at the smallest of turbulence scales, energy 
goes directly to heat. 

Thus, cascading of turbulence is consistent with nature's universal law dictating 
that ordered motion must become progressively more disordered until the energy in a 
flow degrades to heat. The direction and magnitude of energy flow within the cascade 
guides us in mathematically describing the decay of turbulence, not only into heat 
from very small-scale eddies but also from large scales to smaller scales. Because the 
transfer of energy through the cascade is, in some sense, equal at all steps, we can 
easily describe the energy decay rate in a manner independent of molecular processes. 
We will describe this approach more extensively when we consider detailed modeling 
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in the next section. 
In an idealized steady-state approximation of turbulence, exactly as much energy 

enters the fluctuational spectrum of motion at the largest scale as leaves it to become 
heat at the smallest scale. More accurately, there is some loss of energy to heat at 
every scale, but the loss at the smallest scale is dominant (Fig. 9). Although these 
ideas have been exploited to derive interesting properties of the small-scale spectrum 
of turbulence energy, our principal concern here is with the largest scales. It is these 
scales that contain most of the energy and thus exert the dominant effects on mean-flow 
dynamics. 

Transport Modeling of Turbulence 

There are numerous theoretical approaches to turbulence: some reach to the 
conceptual heart of the matter, others are directed toward the solution of practical 
problems, and a few attempt to cover the entire range. Despite its present shortcomings, 
turbulence transport theory, which fits into the last category, already shows promise 
of considerable success in both illuminating the fundamental dynamical processes and 
serving as a vehicle for the solution of practical problems. 

TURBULENCECASCADE 

Fig. 8. With each reduction in scale, tur- 

bulent motion of the larger scale becomes 
mean-flow motion of the smaller scale (ar- 

rows). Because each reduction in scale has 

approximately the same change in mean- 

flow velocity occurring over a much smaller 

distance, velocity gradients become steep- 

er, and a larger fraction of the turbulence 

energy goes directly into heat. 
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TURBULENCE ENERGY FLOW Largest Eddy 

Fig. 9. Mean-flow kinetic energy transforms 

into turbulence energy and thence to heat 

energy, but the relative amounts (indicated 

by the sizes of the arrows) transported by 

each mechanism changes as the scale of 
the turbulence changes. For example, in 

the highly turbulent system being illustrated 

here, much of the mean-flow kinetic energy 

feeds into large-scale turbulence, whereas 

thermal energy receives much of its energy 

from small-scale turbulence. 

Smallest Eddy 

Even for a single fluid with constant, uniform density the relevant mathematical 
formulations are lengthy, and there are significant difficulties yet to be resolved. Nev- 
ertheless, we can capture in a relatively simple manner much of the flavor of turbulence 
modeling by starting with the Navier-Stokes fluid-dynamics equations for an incom- 
pressible fluid-that is, a fluid of constant density and viscosity everywhere and for all 
time. One of our fundamental assumptions is that these familiar and deceptively simple 
equations describe everything we need to understand about the turbulence of such a 
fluid, including every "microscopic" detail in every fluctuating part of the turbulent 
flow. 

The Navier-Stokes equations describe the variations of pressure and velocity in 
the fluid. Using Cartesian index notation with the summation convention, we can write 
the first equation, which is an expression of the conservation of mass, as 

au,  
- =o, 
ax,  

and the second, which is an expression of the conservation of momentum, as 

au,  Qu, U] - - 9~ -- ^- u, - + -  + v,,,- 
a t  9x1 ax,  9x2  . 

Rate of Advection Driving Diffusion 
Change Force 
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Viscous Effects 
I 

I 
1 
I 

I 
I 

'mi. 

Transport In  and Out Sources and Diffusion 

Here vm is the molecular kinematic viscosity coefficient (the ratio of molecular viscosity 
to density pm/p), u, is the ith component of the vector velocity, and p is the ratio 
of pressure to density. Figure 10 illustrates the effects of the various terms in the 
momentum equation. 

So, there it is in a nutshell: the entire, mysterious world of turbulent fluid flow 
described by two short lines of mathematical symbols. Well, not quite the entire real 
world, because many fluids are not the idealized incompressible materials of constant 
viscosity and density considered here, but we shall return to that point below. 

One obvious approach to modeling turbulence is to solve the Navier-Stokes equa- 
tions directly (the left path in Fig. 11). However, certain difficulties limit the success 
of this approach. For example, even when the mean flow is one-dimensional, the equa- 
tions must be solved numerically in three dimensions because turbulence is inherently 
three-dimensional. Only recently have computers had enough computational capability 
to begin meeting the task of solving three-dimensional fluid-flow problems. To describe 
the full spectrum of eddies, the computational mesh would have to be fine enough for 
the smallest eddies, yet cover a domain large enough to include the mean flow and the 
largest eddies. Another complication occurs if the system includes a solid boundary. 
Because the turbulent flow depends on the minute details of the boundary conditions 
(even stochastic quantitites depend on minute perturbations in the initial and boundary 
conditions, such as wall roughness), these details must be specified. Furthermore, be- 
cause a particular set of minute perturbations describe only one possible representation 
of the boundary conditions, repeated calculations must be made with various boundary 
conditions and the results of the calculations averaged to give a complete description 
of the turbulent flow. The memory and speed requirements for the calculations would 

MOMENTUM TRANSPORT 

Fig. 10. The diffusion, driving-force, and'ad- 
vection terms of the Navier-Stokes rnomen- 
turn equation represent the ways in which 
momentum is locally added to or taken away 
from a region in the fluid. 
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APPROACHES TO 

TURBULENCE MODELING 

Fig. 11. Typically, modeling of turbulence 
makes two simplifying assumptions with re- 
spect to the full Navier-Stokes equations: 
an incompressible fluid (V u = 0) and 
the density p constant everywhere. Us- 
ing just the first of these assumptions, one 
could, in  principle, solve the equations di- 
rectly (left pathha difficult task. However, 
if one uses both simplifying assumptions 
together with ensemble averaging, the re- 
sult is two sets of equations: the mean- 
flow equations, which include the Reynolds 
stress tensor flu, and the Reynolds stress 
transport equation. Turbulence transport 
theory (right) uses input from both sets, 
whereas point-functional turbulence models 
(middle) deal only with the mean-flow equa- 
tions (by postulating that R;, is a function 
of mean-flow variables). Later in this ar- 
ticle we describe work on multiphase flow 
in which the assumption of constant den- 
sity has been dropped. Current research is 
just beginning to approach the full Navier- 
Stokes equations for compressible, multi- 
phase flow. 

Compressible 
V.u^O 

Incompressible 
v - u s s o  

p Strongly Varying 
in Space 

p Constant Evetywhere 

"l 
Ensemble Average 

Postulate a Function 
of Mean-Plow Variables 

Los Alamos Science Special Issue 7987 



, Experiment 3 

Turbulence 

ENSEMBLE AVERAGING 

Experiment 1 

Time 

, Experiment 4 

Time 
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tax even the most powerful of our modem computers. If these calculations could be 
accomplished, however, the advantage of a direct calculation of turbulence would be 
that no approximations or empirical postulates are required. 

Ensemble Averages. Largely for the reasons given above, almost all theoretical ap- 
proaches to turbulence modeling use some type of averaging~either temporal, spatial, 
or ensemble. With the proper statistical treatment, the solution of turbulent flow prob- 
lems need not resolve the full spectrum of eddies, initial and boundary conditions need 
not be specified in minute detail, and a flow whose mean velocity is one-dimensional 
can be numerically calculated in one dimension even though the resolved turbulence is 
three-dimensional. However, with these advantages for turbulence transport modeling 
come the disadvantages of assumptions and approximations needed to obtain a set of 
solvable equations. 

What is meant by the average of any flow variable in a turbulent flow? Time 
averages are easy to understand. We say that fluid flow is statistically steady if the time 
average of many fluctuations at some point in space is independent of the averaging 
period chosen. Spatial averages, likewise, are easy to visualize but are relevant only 
when the structural scale of the turbulence is very small compared with that of the 
mean-flow fluctuations-a relatively rare condition. Here we will focus on ensemble 
averaging, which is the most general type of averaging with the fewest restrictions. 

We can intuitively sense what an ensemble average is if we imagine a very large 
number of experiments, all with the same macroscopic initial and boundary conditions, 
but each with its own particular realization of the turbulent part of the flow (Fig 12). 
The ensemble average of some flow parameter at any given point and time is then the 

Fig. 12. Consider a series of experiments, 
each conducted with the same initial and 

boundary conditions. For each, we deter- 
mine the pressure p at a particular point in 

space as a function of time. An average 
of all these experiments would represent an 
ensemble average. 
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average of that parameter over all the experiments. For the condition of steady flow, 
time and ensemble averages are the same. 

The ensemble average is most conveniently formulated in terms of moments of 
an appropriate distribution function. (Here, rather than integral nomenclature, we will 
simply use an overline to designate an ensemble average.) Thus p is the moment, or 
ensemble average, of the pressure (per unit density), and pu, is the ensemble average 
of the product of pressure and the i th component of fluid velocity. (Note that pu, does 
not necessarily equal p K . )  

For each experiment in a series, detailed measurements give p and ui, both of 
which fluctuate strongly as a function of position and time. Likewise, p and vary 
with position and time but in a much calmer fashion. The difference between the 
individual experimental value and the ensemble average is the 'fluctuating part of the 
variable, denoted by a prime: p' = p - p; u, = u; - K. The ensemble average of this 
fluctuating part must be zero for each variable (that is, p' = 0  and = O), but it does not 
follow that the moment, or ensemble average, of a product of fluctuational variables 
(such as f l  or u'u') 1 I vanishes. Indeed, the essence of our turbulence modeling is 
contained in the behavior of such ensemble averages of fluctuational products. 

Reynolds-Stress Transport Equation. One of these fluctuational products, the 
Reynolds stress tensor, is especially important; it is defined by 

Notice that the contraction of the Reynolds stress tensor (that is, when i = j )  is exactly 
twice the turbulence kinetic energy per unit mass of fluid (Rii = = 2K). 

The importance of Rij in turbulence modeling can be demonstrated quite handily. 
First we rewrite the Navier-Stokes equations, expressing each of the variables as the 
sum of its mean and fluctuating parts: 

and 

a a ( ~ + ~ ' )  a2 (u ,+u; )  a(%+u;)  + _  ,(u,+^ ( F + ~ ; ) ]  = - 
at ax, ax, ax; + urn . (12) 

Then we take the ensemble average of these equations (commuting averages and 
derivatives where necessary and remembering that the average of a single fluctuating 
variable is zero) and obtain the mean-flow equations: 

au, = o  
9xi 

and 
a m  __ 9p a ~ ; ,  a2u, 
- + - (u .  u . )  = -- - - + urn- 
at ax, ' ' a x d x ,  9x2. 
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A single term involving the Reynolds stress has emerged, and we see that the only effect 
of turbulence on the mean flow is through the addition of that term to the equations. 
We note in passing that Eqs. 13 form the basis of point-functional turbulence models 
(the middle branch in Fig. 11) and will return to this point shortly. 

The mean-flow equations (Eqs. 13) can be subtracted from the full equations 
(Eqs. 12) to show that the fluctuating parts of the variables obey the equations 

and 

We need Eqs. 14 to derive the Reynolds-stress transport equation, that is, a description 
of the behavior of the Reynolds stress itself (the right branch of Fig. 11). This derivation 
is straightforward but tedious. We merely note that the following steps are involved: 

1. multiply Eq. 14b by ui to obtain Eq. 14c, 
2. interchange i and j in Eq. 14c to obtain Eq. 14d, 
3. add Eqs. 14c and 14d, and 
4. take the ensemble average. 

With some rearrangement of terms and the identification of Rii in several places, the 
result is 

Rate of 
Change 

in which 

Advection Mean-Flow Source Triple 
and Rotation Correlation 

Driving Force Diffusion Decay 

We now can distinguish the turbulence-transport theories and their predecessors, 
the point-functional turbulence theories. As we remarked earlier, point-functional 
turbulence theories use Eqs. 13 by postulating a form for the Reynolds stress Rij that is 
a function of the mean-flow variables themselves. As a result, such theories are called 
"point-functional" because the description of the turbulence at some point in the flow 
depends only on the current value of the mean-flow variables. Point-functional theories 
have the advantage of being as easy to solve as the original Navier-Stokes equations but 
have the shortcoming that the theories are largely empirical and have limited regions 
of applicability. 

Lo.? Alamos Science Special Issue 1987 



Turbulence 

TURBULENCE TRANSPORT 

Fig. 13. Just as Fig. 10 illustrates the vari- 

ous terms of the Navier-Stokes momentum 

equation, this figure illustrates the various 
terms of the Reynolds-stress transport e- 

quation. The driving force and the diffusion 

terms appear twice because each can be de- 

composed into a contribution to the trans- 
port of turbulence and a contribution to the 

generation or diffusion of turbulence. 

In contrast to point-functional theories are the history-dependent, or turbulence- 
transport, theories. These theories, the focus of our interest here, include a set of one 
or more auxiliary equations that describe the history, or transport, of the variables 
associated with turbulence and that are solved in conjunction with the mean-flow 
equations (Eqs. 13). The auxiliary equations can range from empirical postulations 
to some form of the Reynolds transport equation (Eq. 15). 

Because our starting point was the Navier-Stokes equations, turbulence-transport 
theory based on Eqs. 13 and 15 should, in principle, contain all the necessary infor- 
mation to describe the mean properties of turbulent flow. However, in practice it is 
necessary to introduce additional constraints or empirical information to yield a solvable 
set of equations. This procedure of "closing" the set of governing equations is called 
closure modeling and plays a central role in turbulence-transport theory. 

The development of a solvable set of equations is beyond the scope of this article 
(although, in the following section we do so for a simple treatment of turbulence). 
We can nevertheless capture much of the flavor of the necessary developments by 
considering the significance of the terms in the Reynolds transport equation (Fig. 13 
graphically illustrates the nature of each) and by considering the difficulties of describing 
their properties in terms of the macroscopically accessible mean-field quantities. 

Advection, Mean-Flow Source, and Rotation. The advection and the mean-flow 
source and rotation terms of Eq. 15 contain only the unknown tensor R;, and the mean- 
flow velocities; no reference to the detailed turbulence structure occurs. These terms 
constitute a bulwark of settled mathematical structure for which there are essentially no 
uncertainties or controversies about the physics. In essence they describe the manner 

ADVECTION: 
Turbulence Carried 

- 
TRIPLE CORRELATION, 
DRIVING FORCE, and DIFFUSION: 
Turbulence Carried by Turbulence 

Transport In and Out 

I 

I 

MEAN-FLOW SOURCE: I 
I 

Generation of Turbulence DRIVING FORCE: 
from Mean Flow Generation of Turbulence Due to 

Variations in Pressure 
I 
I 

DIFFUSION: 
Turbulence Dispersed by 
Viscous Effects 
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in which the mean flow moves turbulence from one place to another by translation, 
rotation, and stretching or contraction of the fluid. 

Triple Correlation. The triple-correlation tensor u;u;uL that appears in the next term 
in Eq. 15 is usually interpreted as a diffusive flux of the Reynolds stress generated by 
the action of the stress itself. Thus, this term can be called the turbulence self-diffusion 
term because it describes the turbulent diffusion of turbulence. 

We can show in more detail how this identification is made and, at the same time, 
illustrate what is meant by closure modeling. If Q represents some quantity (such as 
the concentration of a dissolved, neutrally-buoyant substance) that is purely advected 
by the incompressible fluid, its transport equation is simply 

Decomposing the variables into mean and fluctuating parts and taking the ensemble 
average (as we did before with Eqs. 12 and 13), we find that 

Since the right side describes the diffusion of Q due to the effects of turbulence, we - 
directly identify Q'u' as a diffusive flux. Just as the flux of a chemical species is 
proportional to its concentration gradient (Pick's law), the diffusive flux is proportional 
to the gradient of Q itself: 

- QQ Q'u' oc -. 
ax, 

The proportionality constant is a function of the turbulence intensity; indeed, more 
detailed considerations indicate that 

in which s is the length scale of the turbulence. It follows that 

In this manner, we see what is meant by closure modeling, that is, the elimination 
of any residual reference to details of the turbulence. For our purposes we need not 
delve any deeper into this aspect of turbulence modeling; the example is sufficient to 
indicate some of the heuristic and empirical procedures we inevitably have been forced 
to employ. 

Driving Force. The pressure-velocity correlation terms (the first two terms on the right 
side of Eq. 15) are especially important to the transport modeling of turbulence. They 
describe one of the principal driving forces by which mean-flow energy finds its way 
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into fluctuations. Moreover, they contribute significantly to the isotropic rearrangement 
of anisotropic turbulence. 

The unstable slip plane of Fig. 6a is excellent for visualizing the effects of these 
terms. Previously, we observed that on either side of the slip plane a slight increase in 
velocity over the mean for that side is accompanied by a slight decrease in the pressure, 
whereas exactly the opposite occurs in the other half of the fluid. Thus, fluctuations 
in pressure and velocity are strongly correlated. Because u i  and Qp'/Oy have opposite 

signs (for example, an increase in u i  in the lower half results in a downward or negative 
pressure gradient), the ensemble average of the product of these variables is always - 
negative. But the two u,'g terms in Eq. 15 are negative, so these terms are a positive 
source to Rxy (that is, to the anisotropic, or off- diagonal, components of the Reynolds 
stress tensor). 

Once Rq is created, it ultimately contributes to the turbulence kinetic energy K ,  
which, as we noted earlier, is proportional to Rii (that is, to the sum of diagonal 
components of the stress tensor). That Rxy contributes to K is easily illustrated by 
examining the contracted form of the Reynolds stress transport equation for, say, the 
type of flow illustrated in Fig. 5. In this case, the mean-flow source terms contribute 
to the rate of change only as follows: 

Hence, the anisotropic, or off-diagonal, components of Rij ,  once created by the mean 
flow from the driving-force terms, eventually contribute to the turbulence kinetic energy 
through the mean-flow source terms. 

Diffusion and Decay. Of the last two terms in Eq. 15, the first is usually negligible 
and represents diffusion of turbulence by molecular viscosity, which requires no further 
modeling. The second involves the tensor Di j ,  for which the usual procedure has 
been to derive a horrendously complicated transport equation and attempt to solve this 
simultaneously with the Reynolds transport equation. Such a procedure introduces a 
host of additional correlation terms to be modeled, and much appeal to "intuition" is 
invoked in the process. 

Bypassing the fascinating but tedious discussion of these derivations, we can 
nevertheless describe several interesting properties of this second term. First, it? 
contraction 

is positive definite so that the -4vmDi, term in Eq. 16 always describes a decay of the 
turbulence energy. 

The second interesting property, deduced by extensive manipulations of the Dij 
transport equation, is that Dij should vary inversely as the molecular viscosity under 
almost all circumstances. Therefore vmDij is essentially independent of viscosity, which 
seems paradoxical. Resolution of this paradox hinges on an important property of 
turbulence: most of the turbulence effects and energy are associated with the largest of 
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the eddies, which decay first by cascading to smaller eddies before converting to thermal 
energy (Fig. 9). Thus, an alternative to the usual modeling of the behavior of DQ has 
recently emerged. We can get the same results by treating the decay of the large-scale 
eddies as the energy source of the small-scale eddies. For this purpose the large- 
scale eddies are momentarily thought of as being "mean flow." In some complicating 
circumstances, such as interpenetration of particles, this alternative modeling technique 
has proven so far to be the only tractable approach. 

Simpler Transport Models and Examples of Their Application 

Some problems do not warrant the degree of complexity and closure approximation 
required to numerically solve the full Reynolds-stress transport equation. A more con- 
ventional and practical approach uses the following approximation (called Boussinesq's 
approximation) for turbulence stresses in an incompressible fluid: 

in which ut, the turbulence viscosity, is a measure of the increase in viscosity due 
to turbulence (see "Reynolds Number" and "Reynolds Number Revisited), and 6,j 
is the Kronecker delta function (6,, = 0 if i # j ,  6,, = 1 if i = j, and S,, = 3). 
This approximation is consistent with the definition of turbulence kinetic energy in 
terms of the Reynolds stress: Ra = 2K.  Furthermore, the approximation bears a 
strong resemblance to the Stokes formulation for laminar-flow stresses p Ã £  in which 
the stresses are related to molecular viscosity and fluid pressure (rather than turbulence 
viscosity and kinetic energy): 

The chief advantage of using Boussinesq's approximation is that transport relationships 
for all individual components of RÃ are replaced by a single expression involving an 
effective turbulence, or eddy, viscosity. 

How does one describe ut? The simplest imaginable description of the turbulence 
viscosity is that it is a constant that depends on some average mean-flow parameters. 
Somewhat better is a formulation that relies on a mixing length 1 ,  which is usually 
an algebraic estimate of the size of the main energy-containing eddies as a function 
of flow geometry. For example, one approach that has proven quite successful for 
boundary-layer flow and some other well-defined jet flows is to define uL by modifying 
Prandtl's mixing-length theory so that 

In this equation, n is the local distance to a rigid object or axis of symmetry and u is a 
representative free-stream velocity. Note that Eq. 26 makes vt a function of mean-flow 
parameters only and is thus an example of point-functional modeling. 
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Reynolds Number 
Revisited 

s discussed in the earlier sidebar, A the Reynolds number is a conve- 
nient and physically sound 

for comparing similar flows under d 
ent circumstances. For instance, as flow 
speed through a pipe increases, the drag 
on the fluid increases and, 
so also does the required 
sure; these increases are reflected in a 
corresponding increase in Reynolds n m -  
ber. Total friction experienced by the 
fluid undergoing laminar flow is usually 
expressed in terms of the Reynolds num- 
ber R ,  allowing easy comparison between 
widely varying tests. 

Once the Reynolds number reaches a 
critical value, however, laminar flow in 
the pipe becomes turbulent, and further 
increases in Reynolds number no longer 
reflect significant changes in measured 
drag. At this point, the effective turbu- 
lence Reynolds number Reff becomes a 
more appropriate gauge, reflecting the ra- 
tio of inertial to turbulence momentum- 
dissipation effects (rather than inertial to 
viscous-dissipation effects). 

Although the Reynolds number can, in 
theory, be increased without bound, the 
turbulence Reynolds number cannot. The 
value of Refi is not directly and uniquely 
set by readily measured properties and 
flow geometry but rather depends on eddy 
generation and the resulting eddy sizes 
within the flow field. A limiting value 
of Res is observed in turbulent-flow ex- 
periments. 

To demonstrate this behavior quantita- 

tively, it is convenient to make some sim- 
plifying assumptions. Typically, the tur- 

e viscosity ui, which is much larger 
than the molecular viscosity uo,, is taken 
to be equal to the product of eddy size 
8 (the turbulence length scale), an appro- 
p a t e  turbulence velocity (here taken as 
K1^2, where K is the specific turbulence 
kinetic energy), and a universal constant 
l/Cy. Thus 

where L is a characteristic length for the 
mean flow. 

If, as is usually the case, the turbulence 
kinetic energy is some fraction of the 
mean-flow kinetic energy (K $ f K u i ) ,  
then 

that is, Reff is proportional to the ratio of 
the length scales. As turbulence gains in 
intensity, its average length scale usually 
decreases slightly, but not without limit. 
In fact, the largest eddies, those that con- 
tain the major fraction of the turbulence 
kinetic energy, will be some portion of 
the mean-flow length scale (such as pipe 
diameter). Therefore, since Cu is usually 
about 10 and an upper bound on L / s  is 
typically 20, Reff will seldom exceed sev- 
eral hundred, even in the most intensely 
turbulent flows. On the other hand. R can 
be several million or more. 
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For more complex flows the simplifications introduced through Eq. 26 are not 
justified, and a transport model that details evolution of ui, or quantities related to it, is 
needed. Although this approach is viable only at the expense of much added complexity, 
it has recently been favored by investigators working with the complicated flow patterns 
of high-speed jets, shock-boundary-layer interactions, and two-phase flows. 

To produce a simplified transport description of turbulence, we rely on flow 
properties already introduced to develop a dimensionally correct form of ut. For 
example, 

where Cv is a model constant, hopefully universal in its applicability, and e = 2umDii. 
The last parameter, e, is related to the mean rate of dissipation of turbulence kinetic 
energy and, as discussed in the earlier section entitled "Diffusion and Decay," is 
independent of molecular viscosity. 

From this definition of turbulence viscosity, we can generate transport equations 
for 6 and K .  For instance, after performing the tensor contraction of the Reynolds 
transport equation (Eq. 15) and introducing appropriate closure expressions, we obtain 
the following simplified transport equation for K :  

Here (JK is a model constant of order one, and, because of Eq. 27, ut is itself a function 
of K and e. 

Next, a treatment similar to that used earlier to split the flow variables into mean 
and fluctuating parts is applied to the Navier-Stokes momentum equation to create a 
transport equation for Dij.  Again, after contraction and closure modeling, we get the 
following transport equation for e: 

where Cl ,  C2, and fi are model constants, all of order one. 
To show how we apply this model, we return to the problem of turbulence in a 

slip plane (Fig. 6). Our goal is to demonstrate numerically that turbulence is indeed 
generated by such a configuration and that we can follow its development throughout 
a two-dimensional flow field as a function of time and position. We use three different 
methods of accounting for the turbulence and discuss the pros and cons of each. 

The first method involves direct solution of the Navier-Stokes equations by a finite- 
difference method as an approximation to the left path in Fig. 11. Our calculations use 
a two-dimensional velocity field, and turbulence below the scale of the computational 
grid is thus ignored. We assume that a slight, sinusoidal vertical velocity is imparted 
to the interface separating the oppositely flowing fluids. The maximum speed of this 
perturbation is only 1 per cent of the mean translational speed (and thus the kinetic 
energy associated with the perturbation is, at most, l o 4  times the mean-flow kinetic 
energy). 
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THREE SIMPLIFIED 

TURBULENCE CALCULATIONS 

Fig. 14. The evolution in  time (from top to 

bottom) of the turbulence in the slip-plane 

problem of Fig. 6, as determined by three 

different types of simplified calculations. In 

(a), a large-scale sinusoidal perturbation in 

the vertical direction is calculated with full 

equations without modeling the unresolved 

turbulence. The marker-particle plot (cor- 

responding to mean-flow streaklines) in the 

third panel shows that a slip-plane instabil- 

ity is a strong source of perturbation in the 

velocity field. In (b), the perturbational en- 

ergy of (a) has been increased 10 per cent 

with the addition of small-scale fluctuations. 

These fluctuations are accounted for with a 

turbulence kinetic energy K and its trans- 

port equation, and the panels show contour 
plots of K .  This more realistic approach 

reveals a faster growth in the turbulence. 

Finally, in (c), all the perturbational energy 

(both small- and large-scale motion in the 

vertical direction) is accounted for as turbu- 

lence kinetic energy. From this perspective, 

mean flow can only be horizontal and thus 
varies in only one (vertical) direction. The 

contour plots of turbulence kinetic energy 

show the same growth rate as in (b) for rnix- 

ing between the layers of undisturbed flow. 

The results of our calculations are shown in the left column of Fig. 14 as marker- 
particle plots in which the lines correspond to mean-flow streaklines (representing what 
you would see if you had introduced a stream of smoke). As time progresses (from 
top to bottom in the figure), we see that the width of the mixing layer spreads and 
displays wave-like structures characteristic of the Kelvin-Helmholtz instability. Thus, 
our calculations show that a slip-layer instability is indeed a strong source of turbulent 
mixing. 

A more interesting and realistic approach incorporates simplified transport of 
turbulence in the calculations. Consider the same flow, only with additional small- 
scale sinusoidal perturbations superimposed on the initial large-scale perturbation. If 
we were to use the first method and treat these minute fluctuations as part of the 
resolved flow, we would need a much finer computational grid to resolve the details 
of the velocity field. Rather than do this, we account for the microscopic perturbations 
through a turbulence kinetic energy K and its corresponding transport equation, then 
plot the results of our calculations as contour plots of K .  This model is more realistic 
because the kinetic-energy variable incorporates all length scales of turbulence, as well 
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as the three-dimensionality. 
For our simplified transport calculation, we assume the same large-scale perturba- 

tion (with an energy l o 4  times the mean-flow kinetic energy) and then add a further 10 
per cent (or l o 5  times the mean-flow energy) in small-scale energy. Our results (the 
second column of Fig. 14) show that accounting for small-scale perturbational energy 
causes the growth rate of the turbulence to be much larger than in the first method. 

We should also note that even though turbulence is inherently three-dimensional, 
both the first and second methods deal with mean flow in two dimensions. In the second 
case, however, we are able to account for the third dimension in an average sense via 
turbulence kinetic energy and its transport. 

A third approach is to treat all length scales as turbulence~even the large-scale 
perturbation, which, so far, has been treated as part of the mean flow. We can do 
this because the exact definition of turbulence is a relative one that depends on the 
observer's point of view. If we adopt this scheme, the flow becomes one-dimensional, 
that is, only vertical changes occur in ii, K ,  and e. 

In our calculations with this method, we assume the same total initial perturbational 
energy as in the second example, but with the large- and small-scale energies lumped 
together. Once again, all length scales of turbulence are incorporated, and our results 
(the third column of Fig. 14) show that the growth rate of the layer matches that in the 
second example very closely. On the other hand, turbulence on the largest length scale, 
which corresponds to mean flow in the earlier examples, is not resolved in detail. 

Thus, to effectively use turbulence modeling, one must decide which length scales 
will be considered mean flow and which will be considered turbulence. Once this has 
been decided, the power of the method allows us to describe the flow accurately without 
having to dedicate excessive computer resources to resolving minute flow structures in 
detail. 

Current Research 

So far we have concentrated on turbulence in a single incompressible fluid with 
density perfectly constant in position and time (the downward branches of Fig. 11). 
Recently, our research has included additional features that are of interest to many of 
the new scientific and engineering directions at Los Alamos and other laboratories. 
These features are 

Two-phase flow interactions: the sources, sinks, and effects of turbulence in a fluid 
containing particles, droplets, or bubbles of another material. 

0 Density gradients: turbulence in an incompressible fluid for which variations of 
temperature or the presence of some dissolved substance cause large variations in 
density. 
Supersonic turbulence: the effects of high-speed processes on turbulence. 

In all cases, we continue to use the basic philosophy of transport modeling, which, 
despite some obvious difficulties, seems at present to be by far the most promising 
approach for the solution of practical problems. 

Two-Phase Flow. Particles, drops, or bubbles suspended in a fluid-whether that fluid 
is a liquid or a gasÃ‘ca significantly alter the turbulence and its effects. Intuitively, 
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TWO-PHASE INTERPENETRATION 

Fig. 15. Our transport modeling techniques 

are able to handle both ordered interpene- 

tration of two phases, such as occurs in the 

laminar-flow transport of blood cells, and 
disordered interpenetration, such as occurs 

in a rapidly moving gas that contains sus- 

pended particles. 

Ordered 

\t ^ 
Disordered 

we expect that when distinct entities interpenetrate a surrounding fluid the creation of 
turbulence is enhanced; on the other hand, we also expect the inertial properties of 
heavy entities to dampen turbulent fluctuations. How can we describe these effects 
quantitatively? 

From considerations similar to those for incompressible flow of a single fluid, we 
know that extra turbulence is generated by pressure gradients producing differences in 
the accelerations of the particles and of the surrounding fluid. Such differential acceler- 
ation induces distortions of the fluid around the particles, thereby creating disturbances 
in the velocity field that would be absent if there were no particles. 

For example, consider the flow field of a shock wave moving horizontally and 
passing a rigid particle suspended in the fluid. If no particle was present, the flow 
would remain completely horizontal. However, as the shock wave passes the particle, 
local velocity fluctuations appear, including changes in the horizontal velocity and 
the generation of vertical velocity. As soon as there is a velocity difference between 
the velocity fields of the particle and the fluid, viscous drag forces, competing with 
differential acceleration, begin to diminish any velocity perturbations. 

In a manner analogous to that for single-phase flow, the relative contributions oi 
acceleration and viscous drag can be compared through a particle Reynolds number 

where Dp is the particle diameter, up and uf  are the local velocities of the particle and 
fluid, respectively, and urn is the molecular kinematic viscosity of the fluid. 

Consider a shock moving with a high velocity through a collection of particles that 
are initially at rest, such that Rn >> 1. At first, the effects of differential acceleration 
dominate and turbulence kinetic energy is created. Then, as viscous drag causes the 
particles to be swept along with the fluid, the velocity difference and the particle 
Reynolds number decrease, corresponding to a dampening of turbulent fluctuations. 
Since the amount of drag depends on the volume fraction of the particles, the turbulence 
level that is induced will also depend on this parameter. 

These effects, however, address only a small fraction of the rich spectrum of 
dynamic processes that can occur in multifield turbulent flows. In our approach 
we discard the more conventional procedure of decomposing velocities and volume 
fractions and, instead, consider momentum and volume fractions as the primary variables 
to be conserved, decomposing these into their mean and fluctuating components. Such 
an approach allows us to derive two limiting fluid behaviors: diffusion (in the limit 
of strong momentum coupling between the particle and fluid fields), and wave-like 
interpenetration (in the weak-coupling limit). Our model is thus strongly analogous 
to the interpenetration of two different molecular species: diffusive when the mean 
free path is short, and wave-like when little or no coupling is present and the species 
transport as if each were expanding into a vacuum. 

In addition, our model handles both ordered and disordered interpenetration of two 
phases as illustrated in Fig. 15. Other technical accomplishments include the resolution 
of mathematical ill-posedness of the multiphase flow equations, the emergence of a new 
closure principle (based on the constraint, with generalized Reynolds-stress expressions, 
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of exactly neutral stability for the mean-flow equations), and the development of 
practical modeling equations. 

The modeling of turbulent flow with dispersed particles, droplets, or bubbles is 
of interest to a wide variety of scientific projects at the Laboratory. For example, to 
model the transport of dust and debris by volcanic eruptions, one must concentrate 
on the interactions between particulate and hot-gas flows. To improve the design of 
internal combustion engines, one needs an accurate prediction of both the combustion 
efficiency and the spatial distribution of heat generation, which, in turn, requires 
knowing the details of the mixing of fuel droplets and air. Although flow within 
the body's circulatory system is normally not turbulent, the transport of blood cells 
can be analyzed by using the equations for ordered two-field interpenetration. Other 
applications include modeling of the flow within nuclear reactors and the analysis of 
shock-wave motion in a gas that contains suspended particles. 

Density Gradients. The second area we are currently striving to understand with 
transport modeling is turbulent mixing generated by strong density gradients that are 
sustained by large variations in thermal or material composition. Coupled with pressure 
gradients, such density gradients can lead to strongly contorted flow with intense 
vorticity near the steepest density variations. Again, the proper basis for deriving a 
generalized Reynolds stress lies in decomposing the momentum rather than the velocity. 

Among the most important configurations to be studied are those for which adjacent 
materials-initially quiescent and of very different densities-are rapidly accelerated 
by a strong pressure gradient or heated by a sudden influx of radiation. The ensuing 
fluid instability (Richtmyer-Meshkov if the shock is going from heavy to light material, 
Rayleigh-Taylor for the opposite case (Fig. 7)) can act as a strong source for the 
turbulent mixing of the two materials. 

For example, consider an experiment in which a plane shock wave progresses 
down a closed cylindrical tube divided into two sections by a permeable membrane 
with air in the first section and helium in the second. As the shock passes from the 
dense to the less-dense gas, the air-helium interface is accelerated. Later, the interface 
is repeatedly decelerated by reflections from the rigid wall at the end of the tube. 
Interface instabilities lead to turbulent mixing of the two gases, and the initially sharp 
plane separating the gases becomes smeared and indistinct. Our work allows prediction 
of the average concentration across any strip of fluid taken normal to the nominal 
streaming direction and calculation of velocity and density profiles within the turbulent 
mixing zone. 

Instabilities driven by density gradients are important to the study of the implosion 
dynamics of pellets used in inertial confinement fusion (Fig. 16). Radiation from a high- 
power laser initiates the implosion of an outer spherical capsule, creating a strong shock 
wave. This shock passes over the interface between the inner surface of the capsule 
and the enclosed gas, is reflected from the core, and returns to the interface where it 
induces Rayleigh-Taylor instability. The resultant mixing of gas and capsule in the 
central region of the pellet can, in many cases, reduce neutron yield. 

Another area of interest is the dynamics of fire plumes in the postulated circum- 
stances of "nuclear winter." Extreme heating of the ambient atmosphere produces up 
to four-fold expansions, resulting in a powerful updraft with intense turbulence. 

CURRENT APPLICATIONS 

Fig. 16. We are currently incorporating addi- 
tional features in transport modeling so that 
more complex phenomena can be described 
adequately. An example is implosion of an 
inertial-confinement fusion capsule, during 
which two-phase turbulent interactions be- 
tween the capsule and the hot fuel gases 
decrease the efficiency of the implosion. We 
also are investigating the density-driven tur- 
bulence that enhances mixing in fire plumes. 

ICF Capsule Implosions 

Nuclear Winter Fire Plumes 
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Supersonic Turbulence. Mach-number effects often can be ignored, but, in some 
cases (such as the high-Mach-number mitigation of a Kelvin-Helmholtz instability), 
such effects are significant. Thus, a third feature of our recent work has been to in- 
clude the principal phenomena resulting from supersonic flow speeds. These effects 
arise across shock waves, in the shear layers behind Mach-reflection triple-shock inter- 
sections, and in the shear layers behind shock waves normal to a deformable wall. 

An unexpected result of our work is the discovery that laminar instability theory 
(as sketched out in the section entitled "Turbulence Energy: Sources and Sinks") is 
applicable to the study of supersonic turbulence. Despite the seeming inconsistency, 
this theory is providing highly relevant guidance to our early modeling efforts. 

Concluding Remarks 

A pertinent question is: What good is all this? Not only has our discussion 
illustrated several ways in which turbulence transport theory is heuristic or empirical, 
but the current large inventory of undetermined "universal" dimensionless parameters 
in its formulation is disturbing. Moreover, full expression of the theory is long and 
complicated, involving numerous coupled nonlinear partial differential equations. As a 
result, a transport calculation requires either costly numerical solutions or questionable 
approximations, or both. 

What are the alternatives? There is no way to resolve turbulence in sufficient 
detail for numerical calculations based on turbulence transport theory to represent 
the effects of any but the simplest circumstances. Mixing-length theories and other 
point-functional approaches are hopelessly limited in their applicability. Fundamental 
approaches purporting to describe turbulence without empiricism are, in general, also 
restricted to highly idealized circumstances. Yet we are faced with the task of solving 
an endless variety of fluid-flow problems, a large fraction of which include significant 
turbulence effects. We need to supply answers to old questions and guidance for new 
developments in a meaningful way. At present, there seems to be no better approach 
to these challenging analytical tasks than that provided by turbulence transport theory. 

Despite the shadows cast by these comments, the situation is actually far from 
gloomy. Turbulence transport theory seems to be functioning far better than we have 
any right to expect. There are at least four reasons for this good performance. 

First, complex processes of nature often display a near universality in the collective 
effects that are of most interest. Just as gas molecules almost always have a nearly 
Maxwell-Boltzmann velocity distribution, it appears that turbulence tends toward a 
similar universality in its stochastic structure. The success of the few-variable (or 
collective, or moment) approach to turbulence modeling relies strongly on the validity 
of this contention. Although the extent to which universal behavior underlies most of the 
random processes of nature is currently a matter of intense scientific and philosophical 
discussion, much evidence supports the ubiquitous nature of this property. Perhaps, 
eventually, such universalities will help to successfully model such diverse instances 
as thoughts in a brain, activities of groups of organisms (such as mobs of people), and 
the dynamics of galaxies. 

Next, turbulence transport modeling pays close attention to the binding constraints 
of real physics: conservation of mass, momentum, and energy, as well as rotational and 
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translational invariance. Such modeling also accounts for history-dependent variations 
lacking in many other turbulence theories. 

We have also paid great care to physically meaningful closure modeling. Auxiliary 
derivations (like those of laminar instability analysis) combine with new formulations 
of mathematical restrictions (like that of precisely neutral mean-flow stability in the 
presence of generalized Reynolds-stress terms) to constrain our modeling procedures 
in the most physically meaningful manner possible at each stage of the development. 

Finally, investigators throughout the world have made numerous comparisons 
with experiments, leading to corrections, improvements, and ultimately to considerable 
confidence in the broad applicability of the results. 

Future research will concentrate on several significant aspects of the theory. Clo- 
sure modeling, of course, continually needs strengthening, especially by first-principle 
techniques that decrease our reliance on empiricism. The numerical techniques need 
greater stability, accuracy, and efficiency for a host of larger and more complicated 
problems. 

But the most intriguing challenge is how to incorporate new and different physical 
processes into our theories. For example, with dispersed-entity flow, we have scarcely 
begun to understand the effects of a spectrum of entity sizes or the deformation of 
individual entities (including their fragmentation and coalescence) or the modifications 
that arise when the entities become close-packed (as they do, for example, during 
deposition and scouring of river-bed sand). The dispersal of turbulence energy through 
acoustic or electromagnetic radiation is another interesting topic that needs considerable 
development. Deriving, testing, and applying the appropriate models will keep many 
investigators busy for a long time. rn 
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